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Introduction

It is important to remember that, althcugh the military materiel

system is large and diverse, it provides but one of the inputs to the

creation of military capability. The fundamental objective of spares

management, therefore, is to furnish the desired level of one input to

a productive process that also uses maintenance personnel, equipment,

and supplies (other than spares). Implicitly or otherwise, some judg-

ment must be formed as to the desired level of the spare-parts input;

and it becomes the task of spares management to accomplish this as
**

efficiently as possible.

This management job is rightfully a major preoccupation of the

military departments and the Department of Defense. The Air Force

alone stocks about 1,200,000 spare items, with an acquisition value

of more than five billion dollars (active inventory, not including

spare engines). Additions to spares stocks amount to nearly three-

quarters of a billion dollars annually. This inventory creates a

managerial task of tremendous scale.

Spares management has many facets -- such as organization, trans-

portation, storage and handling of materiel, repair of parts, and

cataloguing -- but the most fundamental area concerns policies for

stock control and spares requirements determination. This aspect of

spares management will be the main concern of this chapter, with at-

tention focused primarily upon the application of the tools of inven-

tory-control theory to the analysis of spares procurement and management.

Numbers appearing in brackets refer to references listed at the
end of the chapter.

**
The view taken here is that spares, maintenance personnel and

equipment, and the major equipment items themselves (for example, B-52
aircraft) are inputs to a productive process and substitutable for each
other within limits. Spares management is then, technically, a problem
in suboptimization of the system providing the spares input for any speci-
fied level of that input. References [6], [71, and [181 develop these
ideas more completely. Various approaches have been suggested or tried
for fixing the level of the spares input. These will be discussed in this
chapter.
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In other words, the discussion will concern the rules for deciding

which inventory levels are optimal or preferred at the various stockage

points in a system. The focus is dictated by the key role played by

stockage decisions in a materiel system. Stockage policy has a perva-

sive, if implicit, control over the systems operating costs: It de-

termines the level of investment and the frequency of shortages, of

requisitions, of new procurements, and of repair actions.

An introductory-survey of the subject, such as this, cannot cover

the entire field of inventory theory or its applications. Instead,

the chapter-wi-l4l be broken down into three parts: (I) a discussion of

the main choices in modeling logistics inventory systems and the inter-

pretation of inventory models and their results; (2) a review of some

inventory models representing basic analytic approaches that should have

had -- or can be expected to have -- the largest role in application to

logistics systems; and (3) a presentation of several special topics of

importance to the study of spares management.

Inventory Analysis -- Generalities

It is important to realize that inventory models are, as a class,

severe abstractions of the real world. As with other decision-oriented

models, their value lies in a systematic relating of the main elements

of a problem, so that a large volume of recurring decisions of the same

type can be made consistently in accordance with agreed-upon criteria.

But before an outline of the structure of inventory analyses is pre-

sented, some discussion of present-day inventory management may be in

order.

Spares management presents a considerable problem of choice to the

would-be analyst. He can be concerned with the determination of future

requirements or with the distribution of present stocks. He may deal

with the entire system of stockage points, including depots or prinmary

supply points, intermediate storage sites, repair points, and final

users, or with some subgrouping of points; or he may be able to treat

points independently of one another for analytic purposes. In some

problems it may be appropriate to deal with spares according to a
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property-class grouping (Aircraft Wheel and Brake Systems) and for

other purposes identification of the specific weapon (C-130 Aircraft)

may be important.

The existing framework for data collection and management control,

which must limit an investigation to some extent, will be more or less

elaborate, depending on the category of cost and repairability to which

a particular set of spares belongs. In the Air Force, for example,

although high-cost, recoverable spares represent only some three per-

cent of the number of items, they account for nearly seventy percent of

total spares investment. Clearly, more elaborate management methods

are justifiable for these artcicles than for low-cost material. This

management framework may be taken as given for many purposes, though

ultimately some judgment must be reached as to the appropriate cost of

data collection, accounting, and other forms of management input.

As a commodity, spare parts possess several attributes with par-

ticular implications for management. Procurement lead-times may be

quite long, on the order of a year or more for high-cost spares. Future

spares usage is very difficult to predict, partly because of its charac-

teristic randomness, partly because of the need to forecast the opera-

tional program of the end-use weapon, and partly because of obsolescence

due to design change. Initial estimates are particularly error-prone

[19], a fact that is important in studies of the provisioning area.

How much of the total spares-management system must be embraced in

a single analytic formulation? It is certainly neither practical nor nec-

essary to deal with everything at once. Simplifications of the problem

are obviously desirable from the standpoint of facilitating computation

of policies and managerial understanding; however, a valid analysis does

require that all interacting features of the problem be included in a

meaningful way.

For many purposes, for example, it is important to consider related

sets of spares, such as those associated with a particular weapon, rather

than to deal with individual items. This broader view is necessary be-

cause different spares are, within limits, substitutes for each other as

inputs to weapon maintenance. Maintenance efficiency and weapon up-time

are sensitive to aggregate supply effectiveness, and single-item models
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are not well suited to analysis or display of aggregate costs and

outcomes. It is frequently not enough to know that a policy in force

possesses optimal properties for each item; it may also be important

to determine the relation between total cost and effectiveness for

decision-making purposes.

Interaction also exists among echelons. The stock levels held at

depot in part determine the depot-base resupply time, which affects the

stock levels needed at the base. Further, the frequency of ordering

from the base affects the cost of depot operation, through the number

of orders the depot must process and the effect on the variance of

depot issues. These considerations argue for comprehensive multi-

echelon, multibase analyses, but such approaches have met with limited

success.

The Structure of Inventory Analyses

The conventional approach is to cast the problem in the form of

an economic model, for which either (1) costs are the only relevant

consideration and are minimized by the choice of stockage policy or

(2) policy is chosen to minimize costs for some given level of effec-

tiveness. These models must embody assumptions or rules about a

number of different components of the real-world counterpart system:

a policy structure or format, a particular model of the demand process,

a model of the replenishment process, and a statement about the depen-

dence of the relevant costs upon these factors.

The Ordering Policy. The ordering discipline is frequently dic-

tated by the problem or, more rarely, is one of the things to be

determined by analysis. By far the commonest is the (s,S), or two-

bin, policy, for which a large body of theory also exists. When the

stock, x, falls below the predetermined level, s, an order is placed

for S-x units, S and s being chosen so as to minimize costs. A related

discipline is the (s,Q) policy, in which the order placed when the stock

falls to or below s is of a fixed size, Q. These ordering policies may

be coupled with a system of continuous review, in which it is known when

the reorder point is passed. This implies current knowledge of balances,

,Alternatively, effectiveness may be maximized for some given budget.
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which may be a trivial requirement if a single activity is involved

but may involve elaborate reporting of transactions in larger systems.

An alternative to continuous review is periodic review. This

corresponds to the wholesale-requirements methods in a number of areas

where stocks on hand are compared, quarterly perhaps, to desired stocks

and the difference placed on procurement each time. Or, a periodic

review system may be combined with an (s,S) or (s,Q) policy, in which

stock is reordered up to S (or ordered in batches of size Q) if below

s at the time of review (otherwisc no order is placed).

An important special case of the (s,S) policy is the (S-1,S) policy,

in which "one-for-one" ordering is practiced (the reorder point being one

less than the maximum stock). WhLn this policy form can be assumed to be

optimal (typically, where higher-cost spares are involved), it is only

necessary to compute values for a single policy variable, S, and cerf.ain

other analytic simplifications obtain. This makes possible more compre-

hensive analysis for this case.

Models of Demand. The representation of the way in which demands

for inventory arise is an important part of the analysis of inventory

problems. It is usual to treat spares demand as a random process de-

scribed by an appropriate probability distribution function (inventory

studies have also dealt with known, or deterministic, demand, but these

are not relevant to the spares problem). The modeling task then becomes

one of selecting the best function by considering empirical fit, analytic

convenience, and the physical process embodied by the probability model.

The physical assumptions corresponding to the Poisson distribution

are suggestive of the conditions under which spares demand occurs. A

Poisson distribution arises where: (i) the number of demands occurring

in any interval of time is statistically independent of the number oc-

curring in any other nonoverlapping interval (that is, the fact that a

demand occurred today gives no information about the number of demands

tomorrow), (2) the process is stable over time, and (3) if time is divided

into small enough intervals, the probability of two or more demands

in the same interval is negligible ([12], pp. 143-154).

-t .
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The advantages of the Poisson model are compelling: Its assump-

tions seem to be satisfied in practice; its shape (skewed to the right)

corresponds well to empirical frequency disttibutions of demand; it is

analytically tractable; and it is a one-parameter distribution, re-

quiring only the mean rate of demand (or average issue rate) for esti-

mation purposes.

But often the Poisson does not give a good fit to spares-demand

data, and some other. model of the underlying demand process is chosen

[13], [9]. This inadequacy can be attributed to circumstances inter-

fering with the simple Poisson assumptions: There may be "contagion"

effects in maintenance if discovery of a defective part on one piece

of equipment leads to inspection of other units (and possibly preven-

tive replacement); zome parts are liable to damage during installation,

and activity of different aircraft is usually correlated so that the

exposures to the possibility of failure are bunched in time.

The effect of these, or possibly other, unknown, circumstances is

to taise the apparent variance of demand to values inconsistent with

the Poisson hypothesis. A two-parameter distribution is then needed

that will, in effect, allow a more exaggerated skewness. Compound

Poisson distribution functions are a natural choice: They are two-

parameter distributions (allowing a fit to any empirically determined

mean and variance); they retain some correspondence to the assumptions

suggested by the physical process; and they possess some of the ana-

lytical advantages of the simple Poisson. The comoner forms are the

geometric, or stuttering, Poisson and the negative binomial. Without

discussing the particulars of either distribution, the physical process

they describe is that demands arise in bursts, or clusters. The number

in any burst is governed by the geometric or logarithm distributions,

respectively, and the occurrence of the bursts themselves constitutes

a simple Poisson process.

Whatever probability model is used, an implicit problem of esti-

mation exists in the application of the inventory policy. The model

may assume thac the distribution and its parameter values are known,

Reference [12], pp. 268-272, contains a description of the compound

Poisson family.

- - - ~ ~ :- =A
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but in practice these must be estimated from past data. Estimation

errors are one of the most serious causes of poor performance by inven-

tory proposals. It may be advantageous to reflect any uncertainty about

the estimate of the mean rate of demand by means of a Bayesian model

(for an example, see [10]).* Inventory policies incorporating Bayesian

procedures involve considerably increased computation but possess sig-

nificant advantages. There is no restriction to expressing uncertainty

about future demand in a single set of probabilities that may not corre-

spond very well to reasonable assumptions about the demand process;

rather, it is possible to view the mean (or other parameters) of the

underlying demand distribution as itself subject to uncertainty, ex-

pressed in a prior distribution. Demand is then viewed as a two-stage

process of a random choice of the parameter(s) of some type of distri-

bution from the prior distribution and a subsequent random draw of the

size of demand frow the particular distribution selected. The proba-

bilities of any demand level for this two-stage process can be computed,

and, when a sample of actual demand data is observed, the prior distri-

bution can be modified by the application of Bayes theorem and the demand

probabilities recalculated. This ex posteriori distribution will exhibit

a smaller variance, thus reflecting "learning" or reduced Uncertainty

about the parameter(s) of the basic or underlying demand distribution.

Indeed, the major advantage of the Bayesian approach in inventory models

is that it provides a systematic way of reflecting increased knowledge

into the esLimate of the future. Exploitation of this learning in most

cases presupposes a multiperiod inventory analysis.

So far demand has been discussed as though it were a stationa.'

process, that is, identically distributed in every time period. Obvi-

ously, this assumption does not hold for some of the most important

spares-decision situations, because spares usage is related to weapon

activity, which changes continuously as weapons phase in and out. It

is still possible to assume that the distribution is stationary with

respect to some "program element," such as aircraft flying hours, but

modelo reflecting a varying program are necessarily computationally

more complex than "steady-state" models.

See [23] for a general treatment of the subject of Bayesian
statistics.

7r .7;.r
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The case where demand is not stationary, whether due to varying

operational programs (per unit time) or other causes, has been treated

as a problem in adaptive forecasting through the use of exponential

smoothing [2].

The Replenishment Process. The process by which resupply is ac-

complished must be described by the inventory model. This may involve

resupply from a higher echelon, procurement from outside the materiel

system, or repair of spares turned in at the time of demand, depending

on the echelon of stockage and the category of spare parts.

A considerable simplification in the analysis is possible if the

replenishment time can be treated as fixed or known. When it cannot

be a known constant, it is represented as a randomly determined delay,

in which the response times are independent of each other and of the

stock-level position. This delay may be drawn from an empirical dis-

tribution, or an analytic function may be fitted to the data. The sig-

nificance of these alternatives will become clearer in connection with

the specific inventory analyses in the next section.

The Relevant Costs. The relevant costs are, of course, those that

vary when the inventory policy changes. Since the cost structure per-

mitted by inventory models is rather simple, the estimation of cost

parameters requires careful interpretation and judgment. The costs

can be classified under several headings: cost of procurement, cost

of ordering and shipping inventories to the point of use, cost of "hold-

ing," or keeping inventories in stock, and cost of shortages.

Procurement Costs: This is usually taken to be the unit purchase

price plus first-destination transportation cost. In some problems

price "breaks," as a function of order size, must be considered. In

steady-state models, procurement costs or unit costs do not enter di-

rectly, though holding cost is usually estimated as a function of

procurement cost.

Holding Costs: These are all costs associated with holding stocks

in the logistics system: warehousing costs, inventory-taking costs,

cost of modification or maintenance performed on stocks in storage, and

so forth. These are related to the time the stocks are held and are
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typically estimated as a fraction of the value invested in spares.

It is also common to include an "obsolescence risk" factor and an

interest charge. The interest charge is, in principle, the foregone

earnings on the invested sum if it could be devoted to some other,

profitable use. Presumably the government's alternative use of funds

is debt-retirement, and studies of military inventory systems have

generally used the average cost of the public debt as the interest

charge. Where it is desirable to reflect a ceiling or constraint on

funds, however, the interest charge may be varied to ration the availa-

ble funds among competing items.

Ordering Costs: These are the costs associated with preparing a

purchase order or contract, in the case of procurement of spares, or

with preparing a requisition on a wholesale supply point for internal

transfers. They are incurred once per purchase or order. Average cost

of shipping materiel from depot to base is sometimes treated as part of

base ordering cost.

The Shortage Cost: A distinction is made here between the shortage

cost and the shortage penalty. Later in this section, the penalty will

be seen to be equivalent to a policy variable or control; however, there

are also objectively measurable costs associated with unfilled demands.

These are the extra costs of rapid or premium ordering, transportation,

or repair actions that are taken in response to a shortage.

A few words on cost estimation. The overall costs of the inventory

activity depend on such things as the volume and value of the stock ware-

housed and the frequency of orders. If these costs are estimated by

standard cost-accounting methods and used in single-item inventory

formulas, the overall level of activity is in turn determined, and the

cost estimates may change. This circularity can lead to adjustment

effects when inventory decision rules are installed.

This is one of the more persuasive arguments for dealing with systems

or sets of items rather than with individual items. Management is enabled

to focus on overall costs and outcomes for some large part of the supply

activity, reaching the desired position directly rather than by trial and

error. (For a discussion of this point, see [8], p. 76.)
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Other types of costs may be important, especially if changes to

the spares-management system itself are being studied. Chief among

these are the costs of data procezsing accompanying more elaborate

control systems (central accounting for assets, transactions reporting,

or demand forecasting techniques). Also important may be the increase

or decrease of costs accompanying changes in response times -- requi-

sition processing, transportation, or repair times.

Models and System Objectives. The point has already been made

that spares supply is a technical input to a productive process and

that the managerial problem has two aspects: to determine the desired

level of that input and to provide that chosen level in the more ef-

ficient way. The study of logistics has been much more fruitful in

the latter task than in the former: Determination of the preferred

level of spares input is not well understood as an analytic process

(although the problem can certainly be stated formally).

There are essentially two ways of linking the spares subsystem to

the overall logistics system. One is to include in the cost function

a depletion penalty or shortage penalty representing the cost of com-

pensating for the shortage, over the long run, with increased amounts

of other inputs (this procedure will be described more precisely below).

Minimization of this cost function with respect to the policy variable

will, under the assumptions of the model, provide a stockage policy

that is consistent with the desired overall results.

The other method is to require the inventory policy to achieve

some specified rate of depletions or shortage, by item or overall.

This approach is less commonly used but has several advantages. The

rate of shortage occurrences (or their duration, or some similar index

of merit) can be compared directly to the occurrence rate in the live

inventory system, which allows the performance of the policy and the

system to be monitored and permits managerial experience to be applied,

directly and naturally, to choosing an appropriate level of effective-

ness.

Fundamentally, choosing the effectiveness level and estimating the

shortage penalty involve very much the same considerations and informa-

tion. Consider the following simplified two-part inventory system. The
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costs of each part, CI and C2, and the number of shortages of each

for some time period, NI and N2, are both functions of the stocks,

q I and q2'

Since it is somewhat more convenient to work in terms of the

expected number of demands satisfied than expected shortages, we

define:

(i) Z=X- N

where X is the total expected demand and N the total expected shortage.

The minimization of the spares budget, B, can be displayed graphically

as in Fig. i. The curves Z,Z 2 ,/and Z3 represent several of the many

possible isoquants showing the combinations of q and q2 that produce

the given value of Z. The line BB is the combinations of ql and q2

that can be purchased with a given budget (costs are here assumed to

be linear with the q's). The largest value of Z that can be obtained

qlI

B

Z 3

B q 2

Fig. 1. Minimization of Spares Budget
for Given Expected Shortage Rates

with a given budget, or the lowest budget that will achieve a particu-

lar level, is obviously at a point of tangency of a budget line with

a Z isoquant. This occurs in Fig. I at the point a, which is the

lowest budget line that will permit the level Z2 to be reached. At

this point of tangency, the rate at which q, is being exchanged for q2
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along the constant-Z curve, Z., is equal to the rate of exchange of

q for q, along the constant budget line. Mathematically, this is

equivalent to the following:

az aB

(2)

6Z aB

(3) ql=1 q

aqz az

Equation (3) simply states the familiar condition for minimum

cost of a given product: marginal cost of inputs should be propor-

tional to marginal physical products.

If X is now used as a shortage penalty, it is possible to write

a conventional cost function for either of the two spare parts.

(4) C(q) = B(q) + X N(q)

The choice of q will minimize C(q) by taking the derivative and

setting it equal to zero.

dC dB dN
dq dq dq

dN= dZ
Since T T-, Equation (5) is easily seen to be identical withdq dq'

(3). Thus it is possible to use k as a shortage cost in the set of

single-part equations (4) or assign a value of N to each part as in

(3). Either procedure yields the same stockage policy, and both re-

quire the same considerations, information, and analysis.

Of course, the aggregate shortage objective, N (or Z), must be

arrived at in some fashion. By an extension of the foregoing analysis,

it is possible to show, conceptually, how it derives from the relation-

ship of inventory inputs to other logistics inputs.
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Now consider some overall output, F (which might be in-commission

weapons, flying hours, or cargo ton-miles). For illustrative purposes,

F will be determined by two input factors, the inventory-system input,

Z, and one other, M, which represents perhaps balanced doses of mainte-

nance manpower and equipment. Production isoquanrs and constant outlay

curves will again be used.

Z

T

b

F
3

F1

T

M

Fig. 2. Minimization of Overall Logistics
Budget for Given Levels of Output

By the same reasoning as before, the minimum-cost point is at b

for output F2 (or alternatively, F2 is the maximum output for the budget

represented by TT), and it is characterized by these relations, where T

is the total cost.

aF 3T

(6) az T

aM aM

aF aF

(7) a T am

Again, the interpretation of (7) is that all marginal physical

products should be proportional to marginal costs, as a condition of

efficient production. Sinc represents the rate of increase of

- - -f ---------
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total cost as the expected number of demands met increases, this

value is simply the imputed value of satisfying a demand under equi-

librium conditions. Thus it is the negative of the shortage penalty,

which has been designated X. With the substitution, the result is:

aF bF

(8) -

-X

aT
am a

(9) bZ am
az aF

am

Equation (9) allows an interpretation of the shortage penalty, X,

in the context of overall resource allocation. It is the value of a

small change in the overall product due to a change in Z (that is,

6F/bZ), measured by the marginal cost per unit of product in terms of

other resource inputs -- in this case "maintenance and equipment."
T BFThe ratio aT is the rate of increase in total cost per unit added

of the M resource, divided by the rate of increase in the product, F,

per unit of M. This is the marginal cost per unit of F. Thus the

shortage "cost," X, can be derived from the optimizing solution for

the overall logistics system.

This illustration has been carried out in terms of two parts and

two classes of input for illustrative purposes, but in principle it
,

can be generalized to any number of parts and inputs. Note that X

does not in theory involve the valuation of military worth or the util-

ity lost due to weapon down time; it is determined by the marginal

relations between inputs characterizing the minimum-cost (or maximum-

output) solution of the logistics resource allocation problem. One

has the choice of using the determined value of N (or Z) or the ratio,

X. Examination of (9) shows what is involved in treating X as a cost

It has been assumed that the production relation and the constraint
are concave functions that are continuous and differentiable and that all
inputs are used in positive amounts. A deeper analysis must allow for
departures from these assumptions.
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to be estimated by engineering and accounting means. One must be able

to assume that the entire system has been approximately optimized, to

pick one of the other resource inputs, and to evaluate the derivatives

involved: the rate of increase of output per unit of the resource added,

rate of increase in cost per unit of this resource added, and the rate of

decrease of output per unit shortage increase. In general, it is not

correct to use the average cost of some input per unit output; for ex-

ample, the cost of a missile divided by its average alert hours, as a

shortage penalty (although this may be an lower bound on the true value

of 'T bF

Bear in mind that, in practice, the general optimization of a lo-

gistics budget is rarely attempted. Efficient use of resources comes

about by long-run adaptation, through trial and error. It should be the

aim of a spares-management policy to provide "acceptable" service in the

most efficient way and, if possible, to present data on the relevant

range of efficient alternatives. This will frequently mean that some

measure of physical results -- back-order rates or number of shortages --

is more meaningful than an estimate of the ratio, X, itself.
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Inventory Models

Inventory models can be roughly classified by two principles:

They may be steady-state or dynamic, according to their assumptions

about the future, and single-point or multipoint (including multi-

echelon). Another important distinction may be made between single-

item and multi-item models. Most applications to logistics problems

have been based on single-item, single-point, steady-state models.

As was emphasized in the previous section, the underlying problem

in designing a spares-management system is to choose an appropriate

activity or level for optimization and to bring into the solution a

means of relating stockage policy to an effectiveness objective. We

will now examine an important policy area and an inventory model for

this area.

The (S-I,S) Inventory Policy in a Multi-item System

The (S-l,S) inventory policy with continuous review lends itself

to an accurate analytical formulation and the multi-item approach, and

it represents an important policy in logistics applications. High-

cost, repairable-type spares are stocked according to this policy, at

least at base or final-user level, and represent, as we have observed,

a dominating fraction of total spares investment. One-for-one ordering

is the desirable policy when the part in question is so expensive that

the economic lot size is one unit.

In the repairable-item problem, replenishment of inventories may

be either by local repair in an average fraction of the cases, c, or

by resupply from a higher echelon in the remaining fraction, 1 - c.

Both repair and resupply times are characteristically random. Since

order size is not a variable, the relevant costs (that is, the cnes

affected by the choice of S) are the shortage penalty and the cost of

holding; the relevant policy outcomes are the number of shortages and

the total investment.

A sensible policy would be one that provided less stock for items

with short average-response times (perhaps because 1 was near one) than
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those with long times, less for very expensive items than cheaper

ones, and less for low demand items than active ones.

The solution of this problem requires calculation of the proba-

bility distribution of the number of items in "resupply": that is,

the number that have been placed in repair or on order. if this num-

ber goes above the spare stock, S, one or more shortages occur. In

the most general form of such a problem, the probability distribution

of the number of units in resupply must be estimated by Monte Carlo

methods or approximated numerically, involving a large amount of com-

putation; however, if the demand-probability function is restricted

to the Poisson family (simple or compound), it has been shown that

the distribution of the number of units in resupply is of the same

Poisson type as the demand and depends only on the average resupply

time [9]. Thus any arbitrary (random) resupply distribution can be

analyzed quite simply for this class of demand distribution.

This permits a rather extensive treatment of the (S-I,S) policy

for a multi-item system, under steady-state conditions and compound

Poisson demand [9], [101, [II]. One can formulate quite simply a

number of alternative performance measures for an item; one of these

is the expected number of shortages at any point in time, N, as a

function of the stock, S.

(10) N (S) = , (x-S) P(x;R)

x=S+1

P(x;t) is the compound Poisson probability of observing a demand

The referenced studies consider three measuires: "fills," the
expected number of demands per time period that can be filled imme-
diately; "units in service," the expected number of units in routine
resupply at a random point in time; and "ready rate," the probability
that the item, observed at a random point in time, has no back orders.
"Expected shortages" is the complement of "units of service," which
s.s used here because the earlier discussion of inventory performance
has been in terms of shortages rather than fills or units in service.

an
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of x in an interval of time t, and R is the average resupply time,

defined above.

Now let us consider a related set of high-cost, repairable items,

perhaps those applicable to a particulat weapon system. The expected

cost is given by the following, where c is the unit cost, h the annual

holding-cost rate, and d the shortage penalty.

(1i) C = dN(S) + hcS

Shortages are assumed to be back ordered (this chapter will onit

"lost sales"). The minimum-cost value of S is found by taking the

derivative of C with respect to S and equating it to zero (or more

properly, the difference of C, since S is a discrete variable). This

provides the following approximate formula for minimum cost which im-

plicitly determines S.

(12) -dLN(S+l) - N(S)] hc

This says that we should increase S until the value of the decrease

in expected shortages just equals the increase in holding cost of add-

ing one more unit to the stock. Since this equation never holds (be-

cause S is discrete), the exact procedure is to locate S and S+l by

the following and evaluate C for both.

(13) N(S-l) - N(S)] > N (S) N(S+)]

The inventory model involved here is certainly easy to understand

and use, and it is worthwhile to stop and briefly summarize the assum-

tions involved. Besides the form of the policy and the particular

demand-probability distribution, the model allows for no interactions

between stock levels and repair time: The value of S given by (12)

does not anticipate use of priorities in out-of-stock situations.

Also, the possibility of parts queueing in repair is neglected --

repair times are independent random draws. These are typically the



-19-

,.inds of assumptions accepted by inventory models in order to gain the

advantages of a systematic, computable stockage-decision rule.

There are, however, more important objections to this single-

item formulation, for it assumes that h and d are perfectly known and

that minimizing these costs for each item satisfies the objectives

for the whole set. As the discussion of cost estimating suggested,

the "physical" holding-cost portion of h is apt to be affected by the

overall storage requirements of the system, and the interest-charge

portion depends on the availability of funds. The shortage penalty,

d, is more usefully viewed as a device for regulating the number of

shortages than as an objectively measured cost. Finally, even if

sensible values of h and d are presumed, the solution of Equation (12)

for any (or every) item reveals nothing directly about the aggregate

outcomes for the set of items. Therefore, a further step is indicated.

Note that the stock level for any item depends on the ratio h/d, which

is designated K. If K is treated as a policy-control ratio and ap-

plied to all items, there is provided an efficient stockage policy

for any values of h and d that are consistent with the ratio. By

varying K over an appropriate range it is possible to generate a

family of efficient policies and to display the aggregate results in

the fashion of Figure 3. This shows the expected number of shortages

as a function of investment for the system of related items, where

each point on the curve corresponds to the set of policies generated

by a particular choice of K. The expected shortages approach zero

asymptotically. Each set of policier generated by a particular K is

For the sake of brevity, there is no discussion at this point of
an important aspect of the studies referenced in this section and in-
ventory analysis generally: The problem that the parameters of the
demand distribution are not known with certainty. The particular work
summarized here included an extensive Bayesian treatment of the matter
of demand uncertainty [i0].

The mathematical formulation and computer procedures for gen-
erating the relation can be found in [i]. This paper deals with
effectiveness measures that approach 100 percent with increasing total
investment, but the two procedures ate quite analogous.

77- . -- ~--. - .__________
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efficient, for the model chosen: Every item in the system is opti-

mized for that value of the control ratio, and no reallocation of

investment among the items can reduce the number of shortages.

1 .

Expected Number
of Shortages
at Any Time

Total Investment

Fig. 3. Shortages vs. Investment
for a Set of High-Cost Parts

A manager can select h and d and see, in Fig. 1, the broad

consequences of his se' tion. Alternatively, and more directly, he

can simply select the point on the curve of relationship that repre-

sents either the available funds or the highest acceptable rate of

shortage. He implements this policy with the implicit value of K,

which becomes a pure control parameter.

In application, a particular set of items must be chosen to which

the computation is to apply. Since it is a single-point formulation,

each base, ship, or other using activity must be treated separately

(though we may wish to aggregate the results). It may be appropriate

to deal with all the (S-1,S) type items at, for example, an air base,

as one set; or it may be better management to deal with each major

weapon system or mission separately.

In .his connection, it might be noted that one of the simpli-

fications of the model as presented here is that all sh3rtages have

been treated as being of equal importance, so rhat their aggregate

number has a definite meaning to management. This would not he true
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if different parts have different mission essentialities (although

high-cost parts are typically important to the mission), in which case

essentiality weights might be assigned to each part and the weighted

shortage function minimized for each investment level. This is mathe-

matically simple to reflect in models of this type, but deriving es-

sentiality weights is a major undertaking.

It is probably best to treat major differences in importance

associated with different missions, or weapon as opposed to nonweapon

uses, by defining different systems or sets of items accordingly.

The Economic Order Size, Reorder Point Model

The steady-state, (s,Q) model of a single icem at a single point

is the most frequently applied inventory artalysis in the logistical

area, and elsewhere. The particular formulation shown here is based

on [13], but very similar versions can be found in [26] and else-

where.

In contrast to the (S-I,S) policy, (s,Q) policies are suitable

for low-cost spares, in which reordering by batches is desirable, and

where, by reason of the large number of items and their low unit cost,

it is good management strategy to limit the amount of individual

attention and exception actions.

Now, consider the cost relevant to policy determination where an

amount Q is to be ordered whenever the stock level falls to (or below)

S. Reorders cost r each and are received after a random delay p,

subject to a probability distribution h(p). Ns is the expected number

of shortages associated with any reorder cycle if the reorder point is

s. Other expectations are denoted with a bar over the variable, and

the annual cost is written as a function of s and Q as follows (x is

the average annual demand).

Similarly, we have assumed that additional shortages for the

same part have the same importance. Very little has been done with
nonlinear shortage penalties in inventory analyses.
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- x

(13) C = rQ + hcy(s,Q) + dN x

X/Q is simply the number of orders per unit time. An approxi-

mation of y is Q/2 + 1/2 + s - x , if x is the expected demand during ap P

reorder time. This neglects the possibility of periods of zero stock

in which the system is experiencing back orders. Whether or not xP

is subtracted depends on when costs begin to accrue, upon receipt or

placement of the order. A more refined model might charge costs

against stock in pipeline at a different rate than stock on hand.

Equation (13) can be written more explicitly as follows:

(14) C = (r + dN) + he(9 J: + s - Xp)
Q 2 p

Calculation of N requires the marginal distribution of demands

during the randomly distributed reorder time. If g(x) is this distri-

bution and P(x;t) is the probability distribution of demand in any

time of length t, then the marginal distribution is the following:

(15) g(x) f P (x;p)h(p)dp
p=o

The distributions, P(x;p) and h(p) can be of any form, but the

computation of probabilities is simplified if these are chosen so that

g(x) is analytically specified. For example, if P(x;t) is Poisson,

and h(p) can be represented by the gamma distribution, g(x) will be

negative binomial in form. Ns is given by (16):

M

L(x-s) g(x)(16) Ns = S)gA

x=s+l

This formulation assumes that the spacing between orders is large

enough so that orders always arrive in the same sequence in which they

were placed or that crossing of orders is permissible.
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The objective of policy is to minimize (14) by the choice of s

and Q, which is done by finding the first differences of C with respect

to s and Q and setting them equal to zero. These can be rearranged to

yield the following formulas: s is implicitly determined by (18), and

Q and s are solved iteratively, first finding Q on the assumption that

dNs is very small and then finding s using this Q, resolving for Q

2x(r+dN S)
(17) Q= hc

hc

(18) Ns 1 - N -> = N Ns+
5 x

Q

with the new s, and so forth, until convergence is reached. Iteration

is not ne'cessary if dN is small enough relative to r, in which case

the order quantity is determined independently of the reorder point.

These formulas are easily interpreted. Q, obviously, should be

inversely related to holding cost, but directly related to the costs

associated with reordering (since the larger Q is, the less frequently

these costs will be incurred). The logic of the formula determining

s is interpreted in the same way as the formula for S in the (S-1,S)

case, except that the shortages are incurred only periodically (every
x years). If (18) is rewritten as dL (Ns - N ) = hc, it can be
Q Q s

seen that the object is to balance an annual decrease in cost of short-

age against the annual holding cost of one unit.

This type of model is applied to the various stockage points of
large systems, taking advantage of the relative pA .... . f these

--- o . .. ,... ... "" enden
'

c
'

e
' '  of tes

points. Q and s should be large enough, however, to make shortages

rare and keep the possibility small that a depot-level shortage will

react on the lower level with a series of unusually long resupply times.

The model has a number of assumptions in common with the (S-1,S)

model: It assumes that resupply times are random, that the probability

distribution of demand is known, and that the present demand conditions
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prevail for the indefinite future (the steady-state assumption).

These last two assumptions are always violated in practice to a

greater or lesser extent: In particular, the steady-state assumption

may be quite significant for the depot application because the order

quantity may well cover a period of years. During this time bases

may enter or leave the program as far as particular items are con-

cerned, and the average demand level will vary accordingly. Base

programs are usually level for a number of years, and the Q value

will. typically be much less than at the higher level (x and r are

smaller). The life of the item will be longer at depot level, how-

ever, and applications of the model can L "lize r i>s for adjusting

the order quantity as the end of the program approaches.

The (r,Q) model can be more elaborately and precisely stated

than in the foregoing version. A true (s,S) policy computation might

be preferable: It is optimal for this problem and often will be the

ordering format in use. The (r,Q) model ignores the "overshoot" of

the reorder point when more than one demand occurs at the moment the

reorder point is reached. In general, however, the system costs are

not very sensitive to small errors in s and Q, and there is less at

stake in the low-cost area than with the high-cost parts.to which the

(S-I,S) analysis applies. The limitations of lot-size reorder-point

formulas have more to do with their scope than their accuracy as

such.

The same objections or difficulties to an item-by-item approach,

related in the discussion of the (S-I,S) analysis, apply to the eco-

nomic order-quantity area as well. Minimizing each item's cost

function may fail to minimize total-system costs because the cost

parameters are not really constants when total activity varies, and

the item-by-item approach tells management nothing about the impor-

tant aggregate outcomes. In the low-cost area, there may be, in the

short run, constraints on manpower or machine capacity for procure-

ment actions or requisitions as well as constraints on funds.

One approach is to extend the control-parameters approach ex-

ploited in the (S-l,S) multi-item model. If dNs is neglected as

being probably small where economic order-quantity materiel is
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involved (this, at any rate, is a common simplification of the prob-

lein), (17) and (18) can be rewritten as (19) and (20) below:

(19) Q = K where K1 
=

K c
(20) N -N >--- N - where K =

s-i s x s s+l 2
Q

K1 and K2 may be interpreted as cost ratios for understanding

the general logic of the system but used as controls to determine

the overall outcomes for the set of items. K then fixes the order-1
ing frequency and the average in-,estment in order-quantity stocks,

and K2 fixes the expected shortages (given the ordering frequency)

and the investment in lead time plus safety-level stocks. The

resulting stock levels are efficient in that they optimize stockage

for this model and for the particular ratios of costs in the corre-

sponding values of K1 and K2 (recall, however, that this simplified

formulation is a further approximation of the model of (13); a

more complete scheme would allow for the interaction between s and Q).

Management may simply rely on observing the effects of its

choices of K and K2 from accounting reports of the supply activity

and make adjustments of the ratios to achieve desired long-run re-

sults. Additional apparatus is required if management is to be

provided with aggregate data for decision-making purposes. This

might involve display of overall outcomes after the fashion of

Fig. 3, except that three variables are involved: Number or rate

of shortages, number of reorders, and investment. Again, management

might use this knowledge of the system's behavior ",n two ways: To

check the results of applying the "best estimates" of the cost

factors or to relate item policy systematically to his overall

constraints and objectives. Such systems for providing management

with overall information on the outcomes resulting from the choice

of stockage policy have not been widely used because of the compu-

tational work load involved.

*

*An applicatfion [and discussion of this general approach is found
in C8]. See also 4J.
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Dynamic Models

Steady-state models are useful for many situations in which the

time horizon, or program end, is in the future and demand-rate changes

are slow enough for the policy to adapt to them. The limitations of

the steady-state approach may be overcome with dynamic programming

models, although these are of a higher order of computational com-

plexity. Such models are of great theoretical importance [I],

although their application in logistics lies largely in the future.

The basic approach is to divide time into periods that are

independent of one another with respect to demand. Demand need not

have the same probability distribution in each period, and any de-

sired program length and activity profile can be directly incorpo-

rated. The basic analysis involves defining costs in any one period

as a function of demand, stock on hand, and amount ordered. The

procedure is to solve the model for the final (n th ) period, obtaining

expected cost as a function of the inherited stock (and the final

order in the case of zero lag in delivery of orders). The cost and

ordering rules of period n-I can then be determined, which include

the (discounted) costs associated with any level of stock carried

forward to period n. The computation continues recursively until

the expected cost and ordering rule for the iritial period are

obtained.

The dynamic formulation is necessary to obtain exact (s,S) pol-

icies for the case of periodic review. It is also the basis for

the proof that the (s,S) form is optimal under fairly broad condi-

tions, namely that the expected cost of carrying inventory and

backorder incidence in each period is a convex function of the

starting stock. Unit cost must be constant (in any period), and

a fixed cost of placing an order is permitted [24].

Dynamic programming models are very flexible, and can accommo-

date relatively elaborate systems. Increasing the complexity of

the system considered makes it more difficult to generalize the

solutions, however, and computation of specific solutions may become

costly, even with large-frame computers.



-27-

An example of a large, dymamic model will be given in the follow-

ing section on the multiechelon problem.

The Multiechelon Problem

In view of the circumstance that logistics-supply systems are

multiechelon systems, it is perhaps sobering to note that very little

has been accomplished with the analysis of such systems (although

they are currently the object of study in several quarters). Inter-

actions among echelons and between repair scheduling and stockage

performance can certainly be uncovered, however, that attest to the

practical importance of developing this area.

One type of interaction arises because the stock level needed at

a lower echelon to provide a stated protection against shortage is a

function of the response time (or resupply time) from the next higher

echelon, and this response time is in turn a function of the stock

level at the higher echelon. Repair scheduling at depot similarly

interacts with stockage requirements. Another interaction arises

from the determination of base-level order sizes independently of the

higher echelon. The frequency of ordering directly affects higher-

echelon operation costs, and the size of the order affects the appar-

ent variance of depot issues and increases the stocks required

accordingly.

One n-period dynamic, multiechelon model has been formulated,

however, the optimality of its policy rules investigated, and some

solutions computed [3], [17]. This analysis represents perhaps the

most ambitious attempt to date to incorporate a substantial system

of higher- and lower-level installations -- depots and bases -- in

a single cost-minimizing computation. The model generally applies

to items for which there is no ordering or setup cost A' o ..I.ipmet

within the system, that is, high-cost items for which one-for-one

There are exceptions to this statement. From the standpoint of
the Defense Supply Agency or any of the military departments, they
are single-echelon systems for DSA items. From the standpoint of
the Department of Defense as a whole, of course, these organizations
comprise a two-echelon system.
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ordering is the accepted discipline. It does permit a fixed cost

independent of order size at the highest echelon, however. Procure-

ment and shipping costs, holding costs, and shortage costs are

assumed to be linear. Demand originates at the lowest installation

or level, and shortages at each echelon are back-ordered.

The policy computation provides the levels to which it pays to

order for each point in the system, for each time period in the item's

life. The conditions under which Bayesian estimation can be employed

with this model have also been investigated [14].

The Clark multiechelon model demonstrates that optimal policies,

or, at least, policies that are preferred within some reasonable

class, can be computed for extremely complex systems of stockage

points. Such techniques involve a considerable investment in data

assembly and computer time; and one question involved in considering

an application is whether the future can actually be specified in the

great detail required with enough certainty to justify the effort.

It might also be noted that the technique just briefly summarized

relates to a single item. Little consideration has been given to

imposing multi-item constraints on such relatively elaborate one-item

models. However, the static multi-item analysis for the (S-1,S)

ordering policy under conditions of compound Poisson demand, described

earlier in this section, has also been extended to the multibase,

multiechelon problem [25]. In the larger context, the problem be-

comes one of allocating successive units of each spare item to one

of the bases, or to the depot, so as to achieve the greatest marginal

increase in performance. Performance is measured at the lowest echelon,

or base level, by an aggregative criterion such as fill rate or the

expected number of outstanding back orders. Back orders or non-fills

at the depot echelon are not counted in the criterion, but the allo-

cation of units of stock reflects the fact that a unit assigned to

the depot does affect base-level performance by way of the average

depot-to-base response time. Allocation of an investment budget

among the spare items is then accomplished by marginal analysis,

exactly as in the simpler, single-point model.
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Special Topics

Deferred Procurement and Phased Provisioning

Perhaps the most vulnerable aspect of the application of decision

models to inventory problems relates to the knowledge that must be as-

sumed about demand. In practice, demand probabilities are not known

quantities but must be estimated, and this becomes an important source

of error in calculating inventory policies. Indeed, much careful op-

timizing of stockage decisions is simply wasted because of the poor

precision with which the parameters and form of the demand distribution

can be determined.

This is a particularly important problem in the case of initial

stockage decisions for the new spares associated with a weapon-system

phase-in. These decisions, which frequently represent a large part of

the cotal spares buy, must be based on technical or engineering esti-

mates, made prior to any actual operational experience with the weapon.

Such estimates are usually conservative -- that is, they overstate the

demand activity that may be expected -- and are at best subject to

considerable error [19]. The conservatism, or bias, is apparently a

product of the difficulty inherent in making such estimates and of the

realization that large underestimates on one or a few important parts

could cause serious problems for the new weapon system.

One line of attack on this problem is to attempt to refine the

methods by which such estimates are formed or to devise ways of using

the information that they do contain. A different approach is repre-

sented by the set of ideas or concepts called "deferred procurement"

[21], "responsive production," or most recently, "phased provision-

ing." These systems differ in detail but have a common principle:

The substitution of increased management inputs, information process-

ing, and contractor responsiveness for some portion of the spares

that would ordinarily have been bought. Under phased provisioning,

the current system, the manufacturer advances the production date on

units being assembled for eventual incorporation in the end item.

This provides a production-line "float" while the weapon concerned
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is in production. The support manager then buys only a portion of

his total computed requirement, drawing on the float when -- and if --

the need materializes.

Such arrangements do have a cost to the user and quite possibly

would not represent the most efficient way of doing business if the

demand rate were more certainly known. But under the conditioas of

relative uncertainty in a weapon's early life, they represent a way

of buying some time to form better demand estimates before making a

commitment on the entire spares buy. Thus, they may contribute ma-

terially to better system stockage decisions.

Systems Analyses

So far the discussion has mainly concerned the methods and

choices involved in analyzing the problem of stocking a given support

system in as efficient a manner as possible; however, an immediate

object of a study of spares management may be to determine the desired

performance characteristics of the system itself. It is apparent that

inventories are only one of the inputs and that the quantities needed

depend importantly on the time lags -- procurement lead times, trans-

portation times, transaction-processing times, repair-cycle times --

and on accounting accuracy and frequency of review. A comprehensive

analysis of spares management must consider all these inputs as sub-

stitutes for one another.

Inventory theory is also essential to this type of study, of

course, because the comparison of alternative systems is not meaning-

ful unless inventory levels are adapted to the characteristics of

each. But studies oriented toward the design or modification of

spares systems typically bring into focus a different type of problem

and require different methods. Complete optimization of all the in-

puts or processes of such complex systems is not feasible, and the

process of developing improved support structures is much more an

engineering or design problem than a model-building task.

These considerations are particularly important in view of the
current rapid changes in computer technology and the increasing ap-
plication of large-frame computers to inventory management.
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It is sometimes fruitful to specify or design a number of alter-

native systems with differing characteristics and simulate the per-

formance of each under the same conditions of demand or stress [22].

This procedure allows a much more elaborate representation of costs,

priority rules, and interactions between system elements than any

purely analytic approach. It may, for example, be important to study

the effect of repair-capacity constraints, in conjunction with rules

governing which spares items to repair first, on the performance of

a multi-item stockage system. Stockage rules can be based on a

relatively simple model of the prccess and tested in the more elabo-

rate computer simulation, and alternative repair policies or ca-

pacities can be compared on the basis of cost and effectiveness.

A related kind of system analysis concerns the location of parts

repair within a multi-point stockage system. Accomplishing repair

at the lowest echelon reduces the stock-level requirements at those

points by shortening the replenishwent time but requires specialized

equipment and other inputs to create the repair capability. The cost

of alternative repair postures can be compared, providing that stock

levels are adjusted to hold the effectiveness of the combined repair

and stockage system constant for all comparisons.

Computation of Kits and War-reserve Levels

Another sort of stockage problem is represented by kits or

reserve stocks for specific purposes; for example, the fly-away kit

or mobility kit that is designed to provide spares support for some

fixed period or number of missions, without resupply. Other related

examples are the prestockage of war reserves at aircraft-dispersal

sites and determination of shipboard-allowance kit quantities. In

such problems the constraint generally is not cost, or at least not

cost alone, but may instead be weight or cubage.

A particular problem connected with such kits is that, in most

applications, the conditions under which spares-demand data are

obtained can be expected to differ from those in which the kit will

be used. One partial solution to this difficulty may be to collect
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demand data from realistic exercises, but it is generally difficult

to obtain large enough samples ir. this way. It is frequently neces-

sary to use consumption data from routine operations, making judgment

adjustments to reflect the likely conditions under which the kit is to

be used. In this way, allowance can be made for the effect on spares

demand of differing maintenance capabilities and, to some extent, for

the effect of specific types of missions.

The inventory problem here typically takes the form of minimizing

the expected shortages (or, in some versions, maximizing the proba-

bility of no shortage) for the value of the constraint. If Ji is a
.th

criticality factor and Wi the weight for the i] part, the problem

may take the form of minimizing the following for n candidates for

the kit:

n O

(19) iJ (X-S)p.(x;t)

i x=S

Subject to

n

(20) W. = W
i~1.

This requires a computer solution analogous to that described

for the allocation of investment in the multi-item (S-1,S) problem.

Values of a constant, X, are chosen and solutions found for the follow-

ing i equations.

XW.

1 *
S.

i

n

Then LW.Si is checked to see if it is greater or less than the

i=l
constraint W, X is revised accordingly, and (21) is tesolved. It is

usually possible to reach a satisfactory solution in a few iterations.

As in previous examples, the interpretation of (21) must recognize that

S. is an integer. Linear programming methods can be used to optimize a
I.

*

The "kit problem" has received a number of formulations; this onc
follows [16].

-~~~~~: - 1;4- -------
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spares kit for more than one constraint; that is, a kit can be de-

signed to minimize shortages for a target weight and volume or for

weight, volume, and cost.

Determination of the essentiality or criticality weights is a

large subject in itself. In some problems it is reasonable to assume

that all candidates for a kit are equally essential, but in other

applications differences in essentiality have been considered [5],

[20]. Determining the weights involves the application of maintenance

and operational expert judgment to derive a ranking of the candidate

parts with regard to essentiality, considering the importance of each

component to the mission, the degree to which it can be compensated for,

if lost, by repair or redundant systems, and the urgency with which it

must be replaced if defective. The parts are then grouped by major

essentiality category and the weights, Ji. determined by judgment. The

resulting kit can thus reflect, to some degree, the opinions of the users

as to the relative importance of different spare parts to the mission for

which the kit is designed.
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Concluding Remarks

In this survey a great deal of attention has been given to

theories of multi-item management, because such systems represent the

most promising and useful tools currently being considered or applied.

The major decisions of spares management -- the determination of the

total requirement and the procurement budget -- pertain to the system

as a whole, even though the budget must be implemented at the level

of line-item detail. Management's concern is to find an allocation

of its budget to spares purchases that will be reasonably efficient,

that is, one under which no reallocation of the same budget could

raise the overall effectiveness of the system. The ability to move

between the domain of the individual spare part and that of an

efficient system of many, related spare items is, perhaps, the main

practical contribution that inventory studies can make at present.

But each approach to inventory control has its characteristic

shortcomings as well as its advantages. As we have seen, it is

possible to develop rather elaborate dynamic models of single items,

which explicitly allow for varying programs and finite time horizons

and embrace multiple points and echelon relationships. Thus, these

include elements of reality not present in the multi-item techniques

already discussed, useful though these techniques are. The search

for ways of combining these two approaches -- the multi-item model

for a single point under steady-state conditions and the complex

dynamic model for a single item -- is an important research task.

Bear in mind that computational pcacticality is always a required

condition of a proposed sclution for an inventory problem.

We have touched on another sense in which inventory analyses are

limited representations of reality, without, perhaps, fully evaluating

the consequences. This is the general area of prediction of demand

and the related problem of forecasting the incidence of obsolescence.

Spares-demand rates are often too low for satisfactory statistical

prediction, and it seems quite likely that the underlying conditions

governing demand are unstable for any very long forecast period.
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Much progress has been made in this area, particularly in the

development of Bayesian methods and the better understanding of multi-

item models with aggregative criteria, but the demand problem remains

as the least tractable (and most treacherous) aspect of inventory

analyses generally. This is particularly true of the initial provi-

sioning of spares, based on engineering estimates. Not only are the

estimates as such highly subject to error, but design changes, with

consequent obsolescence, are most common at this time. This suggests

that an important characteristic of any inventory policy and the wider

support framework in which it is embedded is its vulnerability to

demand-prediction errors (or, more generally, to an improper specifi-

cation of the demand model). Uncertainty is a dominating characteris-

tic of the spares-management problem.

Such investigations will often lead to design studies of the

whole support system, of the type described in the preceding section.

In this connection, better methods are needed for studying large

spares-support systems to find the preferred mix between inventory

investment, data processing and management, transportation, and repair

inputs. Ideally, "trade-off" studies of particular parts of the

system should give way to a more general optimizing approach.

As a final comment, the criterion or performance measure for a

spares inventory system is an arguable question. Judgmental consider-

ations will influence the choice of both the criterion function itself

and of the desired value of the function to be specified as part of

the policy. This is because of the limited state of our knowledge of

how spares availability, other logistics inputs, and the resultant

military capability are related to each other. Simple aggregative

measures such as the average number of units backordered or the fill

rate appear to be fruitful criteria for suboptimizing the spare parts

input, but more elaborate measures may eventually prove to be useful.

- *-.--r----.
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